skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Corder, Nathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract The problem of missingness in observational data is ubiquitous. When the confounders are missing at random, multiple imputation is commonly used; however, the method requires congeniality conditions for valid inferences, which may not be satisfied when estimating average causal treatment effects. Alternatively, fractional imputation, proposed by Kim 2011, has been implemented to handling missing values in regression context. In this article, we develop fractional imputation methods for estimating the average treatment effects with confounders missing at random. We show that the fractional imputation estimator of the average treatment effect is asymptotically normal, which permits a consistent variance estimate. Via simulation study, we compare fractional imputation’s accuracy and precision with that of multiple imputation. 
    more » « less